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ABSTRACT 

The  electromagnetic  field  problems  involving  moving  isotropic 

and  lossless  medium  have  been  studied,  based  upon  Minkowski's 

theory of electrodynamics of moving  media.  The  analysis of the 

problem is facilitated  by  the  use of the  auxiliary  functions  known a s  

potentials,  which  are  introduced  in a manner similar to  that  used 

for  the  stationary  medium.  Two  problems  are  considered:  the  field 

expansions  in  and  the  parameters of the  waveguide  filled  with  medium 

moving  uniformly  along  the  direction of the axis of the  guide,  and  the 

radiation  field of a line  source  located  above  and  parallel  to a moving 

dielectric  half-  space. 
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CHAPTER I 
INTR ODUC TION 

The  extension of Maxwell ' s   theory  f rom  media   a t   res t  to 

those  in  motion  was  originally  studied  in  the  latter  part of the 

nineteenth  century.  The  covariance of the  equations of e lectro-  

dynamics  under  the  Lorentz  transformation  was  first  proved  by 

Lorentz [ 11 and  Poincare. [ 21 Einstein  [3]  formulated  the 

special   theory of relativity  in 1905. However,  their  work  was 

confined  to  the  question of the  isolated  electron  and  did  not  cover 

the  case of ponderable  bodies  in  general. 

The  problem of the  electrodynamics of moving  media  was 

f i rs t   formulated  correct ly   in  1908 by  Minkowski. [ 41 Despite  the 

fact  that  his  work  was  done  almost  sixty  years  ago,  this  subject 

has  received  very  little  attention;  recently,  however,  there  has 

been a revival of interest  in  this  topic,  principally  as a resul t  of the 

work of C. T. Tai. [ 51 Two other  works on this  subject  which 

should  be  mentioned  are  those of Fano,  Chu,  and  Adler, [ 61 and 

Boffi. [ 71 These  authors  have  each  presented a formulation of the 

electrodynamics of moving  media  that is apparently  different  from 

that of Minkowski.  It has  been  shown  by  Tai, [ 8 ] .however,  that all 



three of  these  formulations, as well  as some  other  possible  ones, 

are  mathematically  equivalent.   For  the  case  in  which  the  velocity 

of  the  medium is small   compared  with  the  speed of light,  the 

Maxwell-Minkowski  equations  can  be  simplified.  Several  studies 

were  made  under  this  assumption.  Compton  and  Tai[9]  have 

derived  the  dyadic  Green's  function  for  an  infinite  moving  medium. 

Collier  and  Tai[  101 discussed  guided  waves  in  moving  media. A 

problem  dealing  with  the  reflection  and  refraction of a plane  wave 

at  the  boundary of a semi-infinite  moving  medium  was  also  in- 

vestigated. [ 111 

The  exact  theory  with no res t r ic t ion  upon the  magnitude of the 

velocity  was  developed  by  Tai [ 121 in connection  with  the  radiation 

problem  in a moving  isotropic  medium. By transforming  the  wave 

equation  into a conventional  form  and  then  solving  it  by  means of an  

operational  method  due  to  Levine  and  Schwinger, a compact  result 

was  obtained.  Another  exact  formulation for . the  same  problem  has 

been  developed  independently  by  Lee  and  Papas. [ 131 They  derived 

the  differential  equations  for  potentials  in  the  moving  media  from 

those  which  are  well known in  the  stationary  case  through  the 

Lorentz  transformation,  and  then  solved  the  transformed  wave 

equations  using  the  Green's  function  technique.  Their  method 
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w a s  also  extended to the  case  in  which  the  moving  medium is 

dispersive. [ 141 

In  this  study,  we  consider  some  additional  problems  in 

the  electrodynamics of moving  media,  for  the  case  in  which 

there  is no  restriction  on  the  velocity of the  medium.  In  Chapter 

11, the  Maxwell-Minkowski  equat.ions  for  the  electromagnetic 

fields  are  presented  and  some  suitable  potential  functions  are 

introduced  in a way  analogous  to  that  commonly  used  for  stationary 

media.  In  Chapter III the  work of Collier  and  Tai  on  the  propagation 

of guided  waves  in  moving  media is extended  to  the  case of a rb i t ra ry  

velocity.  Chapter IV presents  the  theory of the  radiation of a line 

source  over a moving  dielectric  half-space.  Four  cases  are  con- 

sidered:  an  electric  l ine  source  and a magnetic  line  source  each  in 

two orientations,  parallel  to  and  perpendicular to the  direction of 

the  velocity of the  medium.  The  moving  medium is  assumed  to  be 

lossless,  isotropic,  and to have  an  index of refraction  greater  than 

unity. A solution  for  the  Maxwell-Minkowski  equations is con- 

structed  in  the  form of a Fourier  integral.  The  integral is 

evaluated  for  the far field by deforming  the  original  contour  into 

the  steepest  descent  path. In the  process,  an  additional  branch 

cut  integral is  encountered,  but  this is found  to  give a negligible 

contribution  to  the  far  fields. 
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CHAPTER I1 
MAXWELL'S EQUATIONS AND  WAVE EQUATIONS 

ASSOCIATED  WITH MOVING MEDIUM 

In this  chapter.  the  wave  equations as well as  the  equations 

satisfied  by  the  potential  functions  in  the  moving  isotropic  medium 

will  be  derived  which  reduce  to  those of the  stationary  medium  as 

a special  case. 

Maxwell-Minkowski  Equations  and  the 
Transformation of the  Field 
Vectors 

~ 

According  to  the  special  theory of relativity,  the  Maxwell's 

equations  must  be  covariant  under  the  Lorentz  transformation. In 

other  words,  the  Maxwell  equations  have  the  same  form  in all 

inertial  coordinate  frames.  Hence,  for  any  medium  moving  or 

stationary we have 

4 



We shall  use  primed  quantities  to  denote  field  variables  which  are 

measured   in   an  initial f r ame  K' and  unprimed  quantities  to  denote 

the  field  variables  in  an  initial  frame K. In par t icular ,  we assume 

all the  electromagnetic  sources and  the  observers  to  be  stationary 

in  the K frame  and  the  medium  which is moving at a uniform 

velocity  with  respect to the  source  and  the  observers  to  be  stationary 

with  respect  to  the K' frame. If we  assume  that  the two inertial  

f r ames  K and K' have  the  same  orientation (i. e. * the x, ye z axes   a r e  

respectively  parallel  to  the X I ,  y', z' axes)  and are  coincident  at 

t = t '  = 0,  then  the  field  variables  defined  in  the two f rames   t rans-  

form  according  to  the  following  relations: [ 151 

" 

(5a) 
- 1  
E = Y(E + v  X E) + ( 1 - Y )  
" E - v  - 

V 
V2 

- 
B' = Y@ - 1 -  - B .  v - 

C 2 v x E)+ ( 1 - Y )  2 V 
V 

V' 

where 
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p = v / c  

c = l/Jwo = velocity of light  in  free  space. 

If the  velocity is  directed  in  the  y-direction Eqs. (5a) ,   (6a) ,  (7a),  

and (8a) can  be  written  in a more   compact   form as follows:[ 161 

where  the  tensor Y is  defined  as 
= 

For  an  isotropic  l inear  medium  which is  stationary  with  respect  to 

the Kt frame  the  constitutive  relations  between  the  primed  field 

vectors  are  then  given  by 

where E and p denote,  respectively,  the  permittivity  and  permeability 

6 



of the  medium  when  it is stationary. We assume  the  medium  to  be 
- - -  - - ”  

lossless.  Expressing E’, D’ , H’ and B’ in   terms of E, D, H and 

- 
B we  find  with  the  aid of Eqs.  (5b),  (bb),  (7b),  and  (8b)  the  con- 

stitutive  relations  in  the K frame  which  are 

- - - - 
By solving  for B and D in   terms of E and H with = v 9, one 

where 

a =  
1 - n p  2 2  ‘ 

.L 
”*This  useful  notation is due  to  Prof. C .  T. Tai of the  University of 

Michigan. 
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Substitution of ( i 3 )  and  (14)  into  (1)  and. (2)  yields  the  Maxwell- 

Minkowski  equations  for  moving  isotropic  medium.  They  are 

For  harmonically  oscillating  fields  with a time  convention e 

and (16) may  be  converted  into 

- i w  t 
(15) 

The  time  factor e is  understood  and J is considered 
-iwt - 

to  be  the  current  source  term  in a lossless  moving  medium. 

The  Wave  Equations 

The  wave  equations  for E and H can  be  obtained by eliminating 

respectively E or  E between (17) and  (18).  They  are 

8 



- 
where Y" denotes  the  inverse  of  and k = p . ~ .  By virtue of (13) 

and  (14),  Maxwell's  equations  can  be  written as  

- 
2 2 

Expanding ( 1  7 )  and ( 2  1)  and  eliminating  the  term  including H we 
- 

have  instead of (2i)  the  following  relation 

Similarly,  

These  equations  are  seen  to  be  similar to those  for  the  stationary 

medium,  except  for  the  substitution of the  operator 

for  the  nabla  operator 7. If the  vector  field  functions El and HI 
- - 

are  defined  such  that  

9 



‘ I  

then El and El satisfy  the  equation 

It is  not  difficult  to  show  by  writing 

coordinates  that 

- 2- 
E,)] - k El = iopJ 

- 

- 
H,)] - k s l  = Dl X ( a- J) . - - - 

out  the  operators  in  Cartesian 

where  the  operator Va and Da are  defined by 

In view of Eqs.  (28), ( 2 9 ) ,  (23)  and ( 2 4 )  the  differential  equations 
- 

for  El  and H1 are   then 
- 

- 
2 -  - Da(sl* J t p )  

(Da Dl) E l  t k a E l  = -iwpaJ t 
E 

(32b) (Da * Dl) Hl  + k aH1  = - aD1  X(z” 7) 
- 2 -  - 
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Potential  Functions 

The  equations  satisfied  by  the  electric  and  magnetic  vector 

and  scalar  potentials  are  found  by  proceeding  in  .the  same  way 

as fo r  a stationary  medium. [ 181 Since  from (24) and (25) 

(24a) 
- 
" 

Dl ((Y H) = 0 

we  may  write  (taking  advantage of the  fact  that Dl Dl X % 0 

for  any  vector W) 
- 

where  the  superscript  e denotes  that f ie  is associated  with  fields 

of the  electric  type  (transverse  magnetic TM) .  Substituting  (33a) 

into (17) we  obtain 

(34a) Dl X (Ee - iwA) = 0 
- 

In  view of the  above  equation  we  introduce  the  electric  scalar 

potential  function U. Since Dl X DIU 5 0,  we  set 

Applying  the operator "Dl X"  to (33a)  we  have 

Substituting  (36a)  in (18) and  making  use of (35a)  gives 

11 



If we  define  another  vector  function A, such  that 
- 

then A, satisfies  the  following  equation 
- 

We may now !.mpose upon A ,  and U the  supplementary  condition 
- 

AS a resul t  of (29)  and  (40a),  (39a)  becomes 

(4 1 a )  
- 

(Da Dl) A, + k a Al = - a p  J . 2 -  - 

Substituting  (35a)  in ( 23)  and  making  use of (40a)  one  obtains  the 

differential  equation  for U a s  

The  explicit  expressions of (41a)  and  (42a)  are 

12 



I 

Since Ee and He are   der ivable   f rom A and U,  we  have,  from  (33a), 

(35a)  and  (38a) 

- 
( 4 6 4  He - y- l  . D, X A =  - 1 -  cy-' Dl X ( & - I  A,) . - - - 

" 

v P 

Assuming J = 0 and p = 0 and  there is a magnetic  current  source M 

( 17)  becomes 

- - 

A similar  procedure i s  followed  to  find  the  equations  satisfied  by  the 

potential  functions F and V associated  with  the  fields E and km of 
- -m 

the  magnetic  type  (transverse  electric, T E ) .  A summary  of these 

resul ts  is  given below. The  equation  numbers  correspond to those 

in  deriving  the  electric  type  fields  as  shown  above.  Em  and Ern - 

are  evaluated  in  terms of F and V a s  
- 

- 
( 4 W  Em = i w F  - DIV = i w a  F1 - DIV 

- - -1 - 

13 



The  supplementary  condition  imposed  on F1 and V is  
- 

- 
F1 and V satisfy  the  following  differential  equations 

(4 lb)  (Da - Dl) F, t k a F1 = -acM 
2 -  - 

and 

- M 
Dl ((Y D,V) t kza2V = - 

P 

The  explicit  expressions for (4,lb)  and  (42b)  are 

and 

All four of the  potential  functions A,, F1, U and V satisfy  the s a m e  
" 

- 
equation  as  that of E l  and H l  in  the source-free  region. By com- 

- 

bining (45)  and  (46)  one  finds  the  total E and  f ields  in  terms of 

the  four  potentials.  These  are 

14 
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CHAPTER 111 

PROPAGATION  IN WAVEGUIDES 

In  this  chapter  we  shall  consider  the  problems of e lectro-  

magnetic  waves  in  the  interior of a cylindrical  o r  rectangular 

waveguide  which is  filled  with a homogeneous,  isotropic  and loss- 

less medium  with  constitutive  parameters p and E moving at 

uniform  velocity = zv along  the axis of the  guide.  The  wave- A 

guide is assumed  to  have  perfectly  conducting  walls  and  to  be 

infinitely long. The  field  solution  in  the  guide  can  be  divided  into 

two basic  modes, TE and TM. TM modes  have no axial  component 

of magnetic  field,  and  the  field  components  can  be  derived  from a 

vector  potential A = 2A. TE  modes  have  no  axial  component of 
- 

electric  field  and  the  fields  may  be  derived  from a vector  potential 

- 
F = zF. A 

- 
Equation (43) which  the  potentials A and F just  mentioned 

- 

have  to  satisfy  can  be  written  for  the  problems  discussed  in  this 

chapter as  

where 

16 



The  operator Vt i s  the  t ransverse  par t  of the v operator. In the 2 2 

Ul, uZ, z coordinate  system  with  scale  factors  hl, hz, and  unity, 

Eq. (47)  becomes 

- - - 
Since A, = A and F1 = F we will  formulate  the  problem  in  terms of 

- 
- 
A and F directly. 

The  Rectangular  Waveguide 

The  appropriate  solution of A and F which  satisfies  the  boundary 

conditions  for  the  waveguide  configuration  shown  in  Fig. 1 i s  

(49 1 
- A A ihz A = zA = zAo sin kxx sin k y e m = 1 , 2 , 3 , * * *  Y 

A mr lr ihz = zA0  sin- x s i n - y  e 
xO Y O  

I = 1 , 2 , 3 , e * *  

- 
F = z F  = z F o  coskxx  cos k y e m = 0, 1 , 2 , * * *  A A ih z 

Y 

= ZF, cos   xcos - y e I = 0,1,2,= A lr ihz 

X0 Yo m J l # o .  

Substituting (49) o r  (50) into (47) or  (48)  gives  the  following 

equation  relating  the  propagation  constants 

The  above  equation  can  be  solved to give 

17 



corresponds  to a given  mode  which  will  be  designated as the TMmm 

(or TErng ) modes. 

I / /' A 

Fig.  1--The  rectangular  waveguide 

The  TM  modes  may  be  obtained  from A by means of Eq. (45a) 

and  (46a)  where  we  have  to  interchange  the y and z coordinates 

because  the  medium  here is  moving in the t z direction.  Thus 

- - 
(53a) 

- - (v t A E = iwA - (V' t i d )  
i w p e  a2 

A AO(htc i62)kx  cos kxx s in  kyy e fhZ - - -x 
wpe at 

A Ao(htaQ) ky  ihz 
-Y sin kxx cos  kyy e 

W ~ E  a2 

(htuS2) 
iwpe at I ikz 

s in  kxx sin  kyy e 

18 



= 2 sin kxx cos 
A k  

Pa %y e 
ihz 

-Y - *Okx cos kxx  sin k y e 
ihz 

Pa Y 

In 

of 

a similar way  the TE modes  may  be  obtained from F by  means 
- 

Eqs. (45b)  and  (46b)  giving 

= x  F* cos k,x sin kyy e ihz 
e a  

-y Ea kyy e A Fokx sin  kxx cos ihz 

Fokx (htw52) sin k,x cos kyye ihz 
= x  

up€ a2 

+ ?  Foky(h:un) cos kxx s in  k y e 
ih z 

wpe a Y 

A -1 cos kxx cos k y e ihz 
i w  + iwpE at Y 

19 



Cylindrical  Waveguides 
- 

The  proper   form of A and F for  the  cylindrical  waveguide 

shown in Fig. 2 may  be  written as 

(55) 
- 

A A = z A  = z AoJ,(kcr) m+ eihz A cos  
sin 

- A A cos F = z F = z FoJm(kcr) m+ eihz 
sin 

where  Jm(kcr) is the  Bessel  function of integer  order m. A and F 

satisfy (48) which  for  this  problem is 

(57) 

2 

Fig.  2--The  cylindrical  waveguide 

F r o m  (55) (or  (56) ) and (57) we  obtain  the  relation 

2 2 ah2 2w!& hZ 
k c =  k a” - ”- 

a a a .  

20 



The  TM  modes  may  be  derived  from A by means of Eqs. (45a)  and 

(46a)  in  the  form 
- 

- - (v + iG) A 
E = iwA - (V + iwn) (59a) 

- 
i m p  a t  

A m A, (h+ wn)  1 -sin 
WPE a’ cos - 4  X Jm(kcr) m+ eihz 

cos ihz 
mct) e 

iwpE a 2 

The  boundary  condition a t  r = ro requires  

which  determines  the  allowed  values of kc. There  are  an  infinite 

number of solutions  which  will  be  enumerated  as pm p . Hence  kc 

can  assume  only  those  values 

k c , d  - - - P m l  
10 

and  the  corresponding  modes  will  be  labeled  TMm~  where  the  first 

subscript   refers  to  the  number of cyclic  variations  with +, and  the 

second  subscript   refers to  the  lth.  root of the  Bessel  function. 

21 



The' TE modes  may  be  derived  by  means of Eqs.  (45b)  and 

(46b) as 

A mFo(h  t wS2) 1 
-4 x - J,(k,r) m+ eihz 

-sin 
w pc a2 r cos  

The  boundary  condition  at r = ro requires 

There   a re  also infinitely  many  solutions for (63) which  will be 

designated  by pkl and  kc is given by 

The  corresponding  modes  will be labeled  TEmi.  Equation  (58)  can 

be  used  to  solve  for h to  give 
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where 

kc = - (TM modes) f'mQ 

rO 

kc = - (TE modes) . 
r0 

Waveguide P a r a m e t e r s  

The  formula  and  the  conclusions  given  in  this  section  apply  to 

both  rectangular  and  cylindrical  waveguides  with  few  exceptions 

which  will  be  specified  individually.  kc  will  assume  the  value  given 

in  (52)  for  the  rectangular  waveguides  and  the  value  given  in  (61) 

or  (64)  for  cylindrical  waveguides. 

The  propagation  constant  is  given  in ( 5 2 )  and  (65) as 

When np < 1 the  cut off occurs   for  

2 
k2a 5 kc 

i. e .  

where ko = w J G  , and  the  cut off frequency is 
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When f is  less   than f c  wave  may  propagate  in  the - z  direction 

with  phase  velocity  vp = 1/!2 and  an  exponentially  varying 

magnitude.  When f is  slightly  greater  than f c  there is no at- 

tenuation,  but  waves  can  propagate  in  the -z  direction  only  (two 

waves  with  different  phase  velocities)  unless f is  large  enough 

such  that  the  following  relation is  satisfied 

k2a2 - k:a 2 o k 2  

Equation  (68)  can  be  manipulated  to  the  form 

For  frequencies  greater  than f +  waves  can  propagate  in  either 

direction  without  attenuation  but  with  different  phase  velocities. 

If v = 0 then p = 0 and  we  have 
- 

which is the  usual  cut off frequency  in  the  stationary  case. When 

np > 1 a will  be  negative  while -uQ is positive. In this  case  there 

is no cut off phenomenon  at all. Propagation  (with two different 

phase  velocities)  will  be  possible  in  the +z direction  only,  unless 

the  following  relation is true 
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Equation (71) can  be  simplified  to  give 

kc 

The  summary of these  results is exhibited  in Fig. 3. 

PHASE PROPAGATION 
IN -Z  PHASE PROPAGATION IN BOTH 

T P < I  DIRECTION ONLY DIRECTIONS  POSSl BLE 

O Y f C  

- 
I 

I" - . - " - -I ~~~ 

' f+ * f  

ATTENUATED WAVES PROPAGATION WITHOUT 

I N  - Z  DIRECTION 
WITH PHASE VELOCITY ATTENUATION 

PHASE PROPAGATION IN BOTH PHASE PROPAGATION IN 
qp> I DIRECTIONS  POSSIBLE tZ DIRECTION ONLY 
r A 

3 3  
1 

~~ I > f  
0 t 

~- 
Y 

PROPAGATION WITHOUT  ATTENUATION 

Fig. 3"Frequency  ranges  for  wave  propagation  in  the  waveguide 
with  the  medium  in  it  moving  in +z direction 

There  are  an  infinite  number of modes  which  can  exist  in  the 

waveguide  but  for a given  frequency  only a finite  number of them 

can  propagate  freely i f  the  velocity v = & v  is small such  that   np< 1. 
- 
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Therefore,  when np < 1 several   parameters   can  be  expressed in 

t e r m s  of the  cut off frequency.  These  are 

(74b) 

where czc = 2rrfc. The  guide  phase  velocity  and  guide  wavelength  are 

respectively 

1 

(76)  X g  = 2r/h = ( 1-n2P2)Xo/  1-n2) p ! n( i -p2)  

where c = 1 / j E  and X, is the  free  space  wavelength.  The TM,l 

characteristic  wave  impedance is  

(77)  
TM E 

Z,Q 
- -" - 

HY Hx 
Ex - -Y (rectangular  waveguides) 

- - - - - - - (cylindrical  waveguides) 
H+ Hr 
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h +ws2 
W E  a 
" - 

WE a 

where q = E is the  intrinsic  impedance of the  medium.  Similarly, 

the T E d  characteristic  wave  impedance is 

(rectangular  waveguides) 

E r  - E+ 

H9 
(cylindrical  waveguides) 

Hr 
- 

1 

= - q [ l  - (f,/f) 'I-' (np < 1 and f > f c )  + 

1 
W -z =+i-  q [ i - ( f / fc)  '3 (np < 1 and f < f c )  . - 

wC 

TM TE 
It is  interesting  to  note  that  the  product Zml Zm1 = q' = P/E a t  all 

TM 
frequencies  and  all   velocit ies of motion of the  medium. Zml and 
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TE 
‘mi as given  in (77)  anc (78)  when  np < 1 a r e  of the  same  form 

as those  when  the  medium in the  waveguide is not moving.  The 

power  flow  in  the  rectangular  waveguide  for TM modes  is  

( 7 9 )  
0 0 

where coP i s  defined  as  equal to 1 when P = 0 and  equal to 2 when 

P > 0. For  TE modes  i t   i s  

In  cylindrical  waveguides  the  corresponding  expressions  are 
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for TM modes and 

for TE modes.  Although  the  phase  propagates  in  the  way  shown i n  

Fig. 3, the  power flow for  the two  waves  in  the  guide  are of the 

same  magnitude  and  in  opposite  directions. 
- 

When  the  velocity v approaches  zero or  when  the  constitutive 

parameters  of the  medium  are  equal  to  those of free  space, !2 will 

approach  zero  and a will  approach  one;  the  expressions  and  results 

obtained  reduce  to  the  familiar  ones  for  media  at  rest. 
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CHAPTER  IV 

ELECTRIC  AND MAGNETIC  LINE  SOURCES  LOCATED 
OVER A SEMI-INFINITE MOVING HALF-SPACE 

The  geometry of the  problem  which  will be considered  in 

this  chapter is i l lustrated in Fig. 4. J (or M) is a l ine  source 

OBSERVATION 

t x.. "./ OBSERVATION POINT 
POINT 

REGION I f t " O R Y  

P * E  

Fig.  4--Line  source  located  over a semi-infinite  half-space 

of electric  (or  magnetic)  current  located at x = d above  the  plane 

x = 0. The  line  source is ei ther   paral le l  to the  y-axis  or  the  z-axis. 

The  half-space x > 0 is assumed to  be  free-space.  The  half-space 

x < 0 is assumed  to  be a dielectric  with  permittivity E and  permea- 

bility  pand  it  moves at constant  velocity v in  the  positive  y-direction. 

The  purpose of this study is to  find  out  the  effect of the  motion of this 
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region  on  the  radiation  pattern.  Analytically  the  problem i s  quite 

similar to  that of a line  source  above a grounded  dielectric  slab 

as given  by  Tai, [ 191 Barone, [ 201 and  Whitmer. [ 211 The  Fourier 

transform  method  has  been  used  to  construct a solution  for  the 

field  in  integral  form.  The  resultant  integral is  solved  by  the 

saddle  point  method  for  the far field. A branch  cut  integration 

must  be  included  in  several  cases  which  will  be  discussed  later on. 

The  time  dependence is assumed  to  be of the  form e . -iwt 

Electric  Line  Source 
Para l le l  to  Z-Axis 

An electric  line  source  located  at x = d, y = 0 and parallel  to 

the  z-axis  can  be  represented  as 

(83) 
A J = z I o &  (x-d)  d ( y )  . 

Since  the  current  has no variation  in  the  z-direction,  the  radiated 

field  is  also  independent of z. The  z-component of the  magnetic 

field  is  zero,  and  hence  the  electromagnetic  fields  may be derived 

from  vector  potentials AT in  region I and  AB  in  region I1 having 
- - 

only  z-components.  The  electric  and  magnetic  fields  in  region I 

are  given  by 
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I .  

E, = iUAT Hz = 0 

- 
where AT = AT z and AT satisfies the  wave  equation A 

and  suitable  5oundary  conditions  as  discussed below. 

Let  the  Fourier  transform of AT be  denoted  by  gl 

then  the  Fourier  integral 

is  a solution of Eq. ( 8 5 )  provided  that  gl  satisfies  the  equation 

A suitable  form  for  the  function  gl is 

(x 2 d) 

-il (x-d) il ( x t d )  
g 1 2 h  ky) = c2[ e + R e  1 ( o S x S d )  
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2 2  2 
where I = ko - 5 and  cl, c2 and R are  constants  to be  determined. 

At x = d, gl is continuous  but %- is discontinuous.  Integrating 
dx 

(88) f r o m  x = d-  to x = d gives + 

and  this  specifies  the  discontinuity of the  derivative  at  the  source. 

The  boundary  conditions  at x = d a r e  now readily  found  to  give 

[ I + ei2mdl e 
il (x-d) 

(x  2 d) 

+ R e i' ] ( o I x S d ) .  

In  region II let  

- 
where AB i s  the  vector  potential  andR is defined a s  before.  Intro- 

ducing  the  vector  function  AB1  such  that, 

- 

- 

then  AB^ has  to  satisfy Eq. (43a) which in this  case is 
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The Fourier  integral  

-03 

is a solution of (93)  where k, is  given  by 

(9 5) 

and f ,  has  to  be  determined  from  the  boundary  condition  at x = 0. 

For  transverse  wave  numbers I and kx, the  branches  that 

lead to attenuated  waves so the  Fourier  integrals  converge  must 

be  chosen.  This  requires  that we choose  the  roots  such  that, 

and 

also  the  conditions  Re I 2 0 and Re k, 1. 0 correspond to  outward 

propagating  waves. 

The  fields  in  region I1 are   given  f rom Eqs. (45a)  and  (46a)  by 
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o r  

E, = 0 

Ey = 0 

iwABl E, = - 
a 

H , = O .  

The  boundary  conditions of continuous  tangential  electric  and  mag- 

netic  f ields  at  x = 0 demand  the  following  relations: 

which  gives  the  solutions 

Therefore  the  final  expressions  for  the  field  components  in  the  region 

x 2 d are  given  by  the  integrals of the  form, 
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il (x-d) t ikyy 
- e  dky 

(100b) Hx = - P i  Pok, i t l d  
41T . e 

P1 - Pokx -m 

il (x-d) t ik y 
- e  Y 

dkY 

(10Oc)  H  y = L x I [ l +  41T PI  tbkx e i21d iQ (x-d)  +ikyy dky. 
PI - Pok, 

The  branch  points  in  the  %-plane  can  be  located  by  solving  the 

equations, 

7 . 2  

Y (10 l a )   k o - k  = O  

The  resul ts   are  

.( 10 2a) 
t k y  = - k, 

n +  P 
1 t n p   1 - n p  e 

( 10 2b)  ky2 = -wSt f ka = ko - and -ko - n -  P 

When nP < 1 one of the  branch  point  shown  in  (102b) is  on  the  right 

side of point ko while  the  other  one  on  the  left  side of point -ko. 
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When np > 1 both are   located on the  right  side of point k,. When 

n. = 1 the  branch  points  given  in  (102b)  are  the  same as those  given 

in  (102a).  This is shown  in Fig. 8. 

The  proper  positions of the  branch  cuts  can  be found a s  follows. 

Assuming  that  there is  smal l  loss in  the  fr-ee  space  the  wave  numbers 

k,, I and k, become 

(103) k, = k, + ik, 
I 1 1  

I 1 1  1 1 1  
t i2(koko - %ky) 

I -  ” 



The  branch  cuts  that   separate  the  proper  and  improper  branches 

occur  along  the  curves ImI = 0 and Im k, = 0 which  are  portions 

of the  hyperbolas  determined  by  the  equations. 

and 

(107a) 

I I f  It 
ky  ky - kLko = 0 

i. e. 

The  branch  cuts  due  to  transverse  wave  number P a r e  shown i n  

Fig. 5. They  run  from  the  branch  points  toward  the  imaginary  axis. 

In the limit a s  k, - 0 the  cut  becomes  part of the  real   axis  between 

-ko and  ko  and  the  imaginary  axis. In the  crosshatched  region  both 

the r ea l  and  imaginary  parts  are  positive  provided we choose  the 

posit ive  root  or  branch  for I .  The  original  contour  co  must  lie 

entirely  in  this  region  to  represent  outgoing  waves. 

I I  

38 



Fig. 5--Proper  branch  cut  due  to P 

The branch  cuts  due  to  the  transverse  wave  number k, a r e  

shown  in Fig. 6 when  np < 1 and in Fig. 7 when  np > 1. The 

centers  of the  hyperbola  are  in  the  third  quadrant for np < 1 and  in 

the first  quadrant  when  np > 1. In the  limit  when ko reduces  to 
II 
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i k'; 

Fig. 6--Proper branch  cut due to k, when np < 1 
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k, = k; + ikg  

Fig. 7--Proper branch cut due to k, when np > 1 
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zero  the  cut  becomes  the  section of the  real  axis f r o m  - fi ko 

to n+P ko and  the  line k;. = - ko when nP 
1 -np 

1 t n p  1 - n  P2 
< 1. This 

l ine  moves  further  toward  left  as nP approaches 1. 

the  branch  cuts  become  the  sections of the  real  axis 

to t a  and  from ko to -a. In  the  crosshatched l t n g  

When np > 1 

n-P 
f rom - n p -  1 k0 

regions  the 

real   and  imaginary  par ts  of k, a r e  both  negative  provided we choose 

the  negative  root  or  branch.  The  entire  original  contour  co  must 

lie  in  this  region  also. As the  branch  cuts  may be chosen  quite 

arbi t rar i ly ,  as long as they do not  intersect  the  contour  co, we f ix  

their  positions  in  the  way  shown  in Fig. 8. This  choice  will  be  con- 

venient  for  estimating  the  branch  cut  integrals,  as  discussed  later 

on. 

The  location of the  poles  are  determined by requiring 

2 2 2  

Y 
2 w k t  2& 

As 1 = ko - k and kx = k2a - - - - 5 - ki Equation (108a) 
a  a 

can  be  solved  by  first  squaring  both  sides.  The  roots  obtained  have 

.to be  examined  to  find  out  on  which  sheet of the  Riemann  surface 

they  are  located.  Thus, 

p2.t = po k, 2 2  

i. e. , 
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np< I 

Fig. 8 --Relative  positions of branch  points 
and  branch  cuts 

(n2- 1)  P where b = 
1 -n2pt 

= cS2. The solutions are ,  
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where 

2 2  

A = [~ a (b2- 1) t pon 2 2  (po 2 - p'a) t p4] . 

For  the  special  case  where p = pol Eq. (109a)  reduces  to 

(109b) 

and  the  pole is of order  2. 

On the  proper  sheet of the  Riemann  surface  we  require  that 

Im I 2 0 and Irn k, I 0. So the  poles  which  are  solutions of Eq.  (108a) 

a r e  on  the sheets  ei ther  proper  for I and improper  for k, or   vice 

versa.  

When v = 0, Eqs, (100)  reduce  to  that of reflection  from a 

semi-infinite  dielectric  medium. [ 223 When p = po and E = c0 R 

reduces to zero  and Eqs. (100) represents  the  f ield  radiated  from 

a line  source  in  free-space.  Hence  the  motion of the  bottom  region 

which  has  the  same  constitutive  parameters as the  upper  region 

will  not  produce  any  effect on the  radiation  field. 
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Evaluation of the  Contour 
Integral  

The  integrals  shown  in Eqs. (100) a r e  too  complicated  to be 

evaluated  rigorously  and  approximate  method  must  be  used.  The 

saddle  point  method is useful  .for  an  asymptotic  estimation of 

integrals  of this  type  when  there is a large  parameter  involved. 

To  apply  this  method of integration  i t  is convenient to t ransform 

the  integral  into a complex  $-plane  defined as 

(1  loa) ky = ko  sin Cp 

(1  lob) dky = ko cos Cp dCp 

(1  10c) 

(1  10d) Cp = cr tiq 

( 1  10e) y = r s i n 0  

(1  10f)  x-d = r cos 0 .  

The  integral (100a) becomes 

where 
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'. 
CO 

n - 8  k 
I-np, 0 

/' 

i k'; 

koTAN 8, ;z 
k p c  8, 

Fig. 9a--Path  of  integration  in  ky-plane  and  +-plane 
when  np < 1 
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-" . - .".... .. ..... . . . "_ , ". . . .... - - - " . 

sin + - - 1 sin2+ 1' 
( l l l a )  P(+) = 1 t 

a 

2b 
a a 

1 

- - s in+  -1 sin2+]2 
- 

i2d ko cos + 
e 

Equation  (110)  represents a mapping of the  complex k -plane  into a 
Y 

stripe of the  complex  +-plane.  The  transformed  path of integration 

co  and  the  branch  cuts  in  +-plane  are  shown  in Fig. 9. The  branch 

cuts  which  separate  the  sheet  for  which I m  I 2 0 from  the  sheet 

for  which I m  1 I 0 a r e  no longer  cuts  in  +-plane.  Because of the 

choice of positive  sign  in  (1 1Oc) the  hatched  region  in Fig. 9 co r -  

responds to the  proper  sheet for I. The  branch  points  associated 

with k, in  the  +-plane  are  transformed  from  (102b) as the  solution 

of the  equation 

n +  P n - P  
(112a) sin(cr t iq) = - and - - 

1 + n P  1 - np 

and  the  poles  from  (109)  as 

2 

(1  12b) s in (up  t TP) = [". a A']/(pz - c.. a 

Their  positions on the  +-plane as relative to those  branch  points  are 

shown in Fig. 10 when p =  po. As was  mentioned  earlier,  those 

poles  given by (109)  and  (1 12b, c)   are   located on sheets  which  are 
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in 

Fig. 10--Positions of poles  relative to branch 
points  when p = po 

proper  f o r  one of the transverse  wave  number  and  improper  for  the 

other  one, s o  the  poles  in  the  hatch,ed  region of +-plane  are on  the 

bottom  sheet  while  the  poles  in  the  non-hatched  region  are on the 

top  sheet. 

The  saddle  point of the  exponential   term  occurring  in Eq. (111) 

is found by setting 
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which  gives + = 0. The  steepest  descent  contour is  determined by 

cos(u-0) cosh = 1 which is denoted  by  cs  in  Fig. 9 where  cs l  

is the  contour  corresponding  to  positive  observation  angle 0,  and 

csz  corresponding to  a negative  observation  angle 0,. 

The  main  task now is to deform  the  original  path  co  into  the 

steepest   descent  contour  cs  and  then  perform  the  integration 

along  cs. 

In  deforming  the  contour  co  into  contour  cs  passing  through 

the  saddle  point 4 = 0 some of the  poles of P(+) given  in (109) o r  

(112b, c )  may  be  encountered  and  the  contour  may  be  intercepted 

by the  branch  cut. So (1  11) may  be  writ ten  as 

(’ P e 
ikor  cos(+-0) Ez=” 

4r . d+ 

P 

where @ is the  value of 4 at  the  pole as given  by  (1 12b, c )  , F(+p) P 

has  a magnitude  equal  to  the  residue of P(+) a t  the  pole  and a sign 

chosen  to  correspond to the  position of the  pole. K is  the  branch 

cut  inte g r al. 
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If P(+) does  not  have a pole  in  the  vicinity of the  saddle  point 

the  integral  along  the  steepest  descent  contour is readily  evaluated 

by expanding P(+) in a Taylor  series  about 8 as 

m= 1 

where 

Prn(4) = 
dm dCbm p(+) I 

+= e 

Along the  steepest  descent  contour cs near  e, l e t  4-6 = pe  . Then iw 

+ .  .. 

= ikor  - -  i ko r  p 'cos  2w + - kor p sin 2w 1 1 2 

2 2 

= ikor - - kor p 1 2 

2 

and - 31T 

lT 

lT w = - -  
-iz 

4 Q, = e + p e  

31T .- 
d+=  el dp in  the 2nd quadrant 

lT - iq 
d + = e  dp in the  4th  quadrant. 
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Hence the in tegra l   t e rm in (113) becomes 

m=OL p, 

r p1 pm(e) pm e im(- a) e ikor - - e 
k or 

t 2 

0 
m !  

The  major  contribution  to  the  integral  comes  from a small range 

0 < p < p1 along  the  contour  cs  provided  kor is sufficiently  large. 

Combining  the two t e rms   i n   (1  15) gives 

l r m  
ikor-i-  

.Tr 

( 1   1 6 4  - w POI, e e c 1 i- ( -1) "1 - im4 
4lT 

m=O 

./ 
0 

Because of the  rapid  decay of the  exponential,  the  integral  from 0 

to p1 does  not  differ  much  from 
r (T) 
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I 

where I? is the  gamma  function.  The  leading term of (1 1 6 4  is 

therefore 

lT 

+ W P O I O  
i k o r - i  - 4 

.(116b) E, % - 1 e . 
2 &(kor) 

The  residue of P(+) at the  pole + is given by 

(117) 

P 

+=Op I 
z b2 2b 1 

a a  a 

1 

[p cos 4 - po(n a -- - - s i n +  - - sin2412 J e i2d ko cos + 
+ 

b2 2b 1 
a a 

1 

d [ p c o s +  t pO(n2a - - - - s in+  - - sin2+)' J 
d+ a 

+=+, 

2 i2d ko cos + 
2p cos +, e P - - - 

2 
2 

-p s in+  t !h (b  t s in+p)  
P a  

If a pole + happens  to  be  near  the  saddle  point + = 8 the  Taylor P 

series  expansion of P(+) is no longer  valid in a sufficiently  large 

enough  region  around  the  point 8. Then a Laurent   ser ies   must  be 

used. When p =  po the  pole is of order  two and  unless  the  observation 

angle 0 is  near  90 and f3 i s  nearly  equal one  this  pole of order  two 

will  not  be  in  the  vicinity of the  saddle  point.  In all other   cases  
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the  pole is a simple one. We have 

where P I ( + )  is analytic  in  the  region  around 0 and  may  be  developed 

into a Taylor  series.  F(+p) is the  residue of P(4) at + = + and 
P 

Pl(+) can be  expanded  in Taylor ' s   se r ies  as, 

m 
am(9-0) 

The  portion of the  integral  for  the  field  involving PI(+) leads to  the 

same  form  discussed  before.  The  remaining  integral  to be evaluated 

is, 

Near  the  saddle  point  and  along  the  contour c s  

3rr IT 
i 4  -i - 4 

3rr 
i q  

+ - 9 , = p e  - (+p-f3) = - p e  -(9p-0) 

d+ = e  dp in 2nd quadrant 
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- Tr lT 
-i 4 + - +p = pe- i4-  (+p-e) d+ = e dp in 4 th  quadrant 

Making  the  change of variable t = p in  the  integral 2 

kor P Z  
a ” 2 

d P  

and  following  the  steps a s  shown by Oberhettinger[ 231 we  have 
k,r t 

where 

2 - t  
a3 2 

erfc  (x) = 1 e dt . 
X 
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The  error  function  may be expanded  asymptotically  for x - OD 

as [ 241 

provided  the  phase of x is in  the  range  between - - and - 3T erf(x) 
31T 
4 4 .  

is a n  odd  function of x s o  i f  the  phase of x is not  within this range 

the  above  asymptotic  expansion  can  still  be  used  through  the  use of 

the  following  relation. 

(124)  erfc (x) = 1 - erf(x)  = 1 t erf(   -x)  = 2 - erfc(-x)  . 
1 

If the  phase  angle of iko r (+,-e) 2 ] z  is in  the  range  between - - 31T 
4 

ikor 2 

e 2 (+,-e) 
ikor 

m= 0 
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This  expression  shows a significant  modification of the  radiation 

field  when + is  located  close  to  the  saddle  point 8, P 

When  n? < 1 and i f  the  angle of observation 8 extends  over 

one of the two limits (- ,one on the  right  side  and  another  on  the  left 
\ 

side of the  x-axis  given by 8, = sin" (-) l + n p  and 8, = sin-lt-)) 1 -np 
n+ P n- P 

the  path of integration  will  be  intercepted by a branch cut.  To 

evaluate  the  integral  in  this  case a branch  cut  integration  must  be 

included.  Following  Ott's [ 251 method, a complete  contour  can 

be  constructed  as shown by csb l   o r  Csb2 in  Fig. l l a   w h e r e  the 

dotted  line  denotes  the  part of the  path  which is traveled on  the 

bottom  sheet of the  two  Riemann  surfaces.  The  corresponding 

path of integration  in  the k -plane is  shown  in  the  same  figure. 

When  nP > 1 and i f  the  angle  observation 8 is  in  the  range  between 

Y 

8 = sin-' ( 1 - + n p  + p )  and 8 = sin-'( %)a branch  cut  integral   must 

also  be  involved.  The  path of integration is  shown  in  Fig, 11b. The 

branch  cut  integration  which is  now pa r t  of the  total  integration  can 

57 



\ 

'/ 111 

""" 4 

i k i  

\ 

Fig. l l a - -Pa th  of integration  when  the  steepest  descent 
path is intercepted by the  branch  cut aod np < 1 
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\ 
\ 

Fig. 11b--Path of integration  when  the  steepest  descent 
path C s  is   intercepted by the  branch  cut,  np > 1  and 

sin-’[++  1)/b-p)] e < sin-’[(npt l)/(nt 811 
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7r t a  

Fig. l l c - -Pa th  of integration  when  the  steepest  descent 
path C, is intercepted by the  branch  cut,  np > 1 and 

e > sin-’[(np t 1 ~ @ +  p )] 
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be performed  in  the  complex k -plane  as  follows: Y 

Let a change of variable be made  such  that 

where kyo is  one of the  branch  points  given  in  (102b).   In  terms of 

the new variable t, the  following  approximations  are  permissible 

for  large  values of y. 

2 2 2  2 2  t2 i = k,-k = = k,- kyo + - - 2ikyo  t/y Y Y 2  

2 2 
2 k o - k  

YO 

2 2 2 b2k: 2bk, kx=  n koa - - - - (kyo + i:) - (kyo + i 
a a 

2 - (bk, + kyo) ($) 
a 

POk, 

P i  
1 +- 

i2B d 
e 1 

Equation  (100a)  reduces to 
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2 

- - [ (bko+kyo) t]’ i B  (x+ d) t ikyoy 
25rpP’y a Y e  

2 
a2 

1 

2 2  - e  -Ikyo - ko (x t d) t ikyo y 

The  above  result is obtained by  making  use of the  contour  repre- 

sentation of the gamma  function. [ 261 The branch  cut  integral  given 

above  contains  an  exponential  damping  factor  and  it is inversely 

proportional to the  three  half  power of  y. Hence  it is always 

negligible as compared  with  those  given  by (1 16) or  (125).  

Those  residue  terms  which  have  to  be  considered as shown in 

.( 11 3 )  when  the  contour  was  deformed  contain  an  exponential  factor 

e 
ikor  COS(+^-^) ikor  cos(up-8)  coshq + kor sin(up-8)  sinhqp 

= e  P 

and  the r ea l   pa r t  of the  exponent is always  negative.  Except  when 

8 = 9 0 ”  the  residue  wave is  also  negligible as compared  to  the  space 

wave  given  by ( 116). 
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The  same  procedure  can  be  used  in  evaluating  the  field 

components H, and H as given in (100b)  and (1OOc). The  leading Y 

terms  from  the  saddle  point  method of integration  are 

where P ( 9 )  is  given  in  (1  l la)  . Converting  into  cylindrical  coordi- 

nates we have 

( 1   1 6 4  
cc, 

Hr - 0 

TT 
ikor- i -  4 

(1  16f) kOI0 e He % Hy cos 8 - H, s in  0 = - 1 P(Q) 
2 6  (kor)2 

- 

TT 

% -wcloIo i k o r - i -  
(1  16b) 

4 
E, cc, 1 

e P ( 9 )  
2&(kor)T 

and  the  Poynting  vector is  

which  has  only a radial  component. 
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Magnetic  Line  Source  Parallel 
to  2-Axis 

For  a magnetic  l ine  current  source  located  at  x = d, y = 0 

and  parallel  to  z-axis  we  write 

The  radiated  field  has no variation  with  respect  to z. A s  the  z- 

component of the  electric  field is  zero the  total  fields  may  be 

derived  from  electric  vector  potentials FT in  region I and Fg 
- - 

in  region 11 having  only  z-components. Similar procedures   are  

used  in  solving  this  problem  as  that  for  the  electric  line  current 

source  case  given  in  the  previous  section. Only those  important 

steps and resul ts   are   given below. 

The  field  components in upper   region  are   der ived  f rom  FT  as  
- 

or  

1 aFT 

€ 0  

E = -  
ax H y = O  

EZ = 0 Hz = i w  FT 
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where FT = z FT and FT satisfy  the  wave  equation 
- A 

and  the  suitable  boundary  conditions.  The  solution  for (130) is 

where g2 is  given by 

( 132b) 

2 2 2  with B = ko - kye 

In the  bottom  region  let 

(133) v = y v  R =  y R  
- A - A 

- 
FB = z FB A 

and  introduce  the  vector  function  such  that 

where F B ~  satisfies Eq. (43b) which  reduces  here  to 
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The  field  components  in  this  region  are  derived  from FB by Eqs. 

(45b)  and  (46b) 

- 

- 
( 136a) 

- - 
-1 - E = -  ( Y - l o [  ( V + i G ) X F B ]  = - -1 "1 (Y 

E E 

o r  

E, = 2 2 [y  + iwn F B ~  1 H, = 0 
~a 

Hy = 0 

E, = 0 
io 
a 

Hz = - FB 1 -  

The  Fourier  integral 

is  a solution of ( 135)  provided kx is  given as shown in  Eq. (95)  e 

By matching  boundary  conditions  at x = 0 we get 

€ 1  + E ,k, 
(138a) R =  €1 - cokX 
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il d 
ia Mo e 

( 138b) f t  = 
€ 1  - c0 kx 

The  choice of the  branches of I and k, are  decided  in  the  same 

way as for  the  electric  line  source  case.  The  field  components 

in  the  region x 1 d a r e  given by integrals of the  form, 

MO 
a, 

!% [ 1 +ReiZPd] e (1  39b) E, = - dS '  
il (x-d) + ikyy 

The  branch  points  are  given  in Eq. (102)  and  their  relative 

positions  shown  in Fig. 8. The poles   are  found  by  solving  the 

equation, 

Squaring  both  sides of (140) we have  the  following  results 

(141a) k Y =ko [g  a B i ] / ( 2  - 6) a 

where 

E E o  2 
2 2  

2 2 2  2 
B =  [- a (b  -1) t Eon ( E ~ - E  a) t E 

and 
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(14  lb) ky = ko/P 2 ko ( i f  E = eo) . 

Applying  the  transformation  shown  in (1 10) Eq. (139a)  changes 

to 

where 
b2 2b 

E C O S + - E ~  n a - ” -  
( 2  a a a 

(142a) a(+) = 1 + 
r c o s + t t 0 ( n 2 a - - - ~ s i n C $ - - - s i n 2 ~ ~ ’  b2 1 

1 

a a  a 
. e  i2dko cos + 

The  transformed  path of integration  co,  the  path of steepest  

descent,  the  saddle  point  and  the  branch  points  due  to k, are   the 

same as those  shown  in  Fig. 9. The  poles  are  transformed  from 

(141) a s  

(143a) sin + = sin(u + iq  ) = P P P  

(143b) 1 
” 

- P  
( i f  E = e o )  

Because of the  deformation of the  path of integration 

in  (142)  becomes 

the  integral 

iwEoMo 1 G ( C $ ~ )  e - + K  
ikor  cos(+ -0 )  

2 
P 

68 



where 9, is  given  by  (143),  G(+p) i s  the  residue of a(+) a t  +p 

and K is  the  branch  cut  integral. If there i s  no pole  near  the 

saddle  point 0 t he   f i r s t   t e rm in (144)  can  be  evaluated  approximately 

for far field as 

ikor  -i- 5 1 m  lT 

* € O M 0  (145a) Hz= - e e 
41T 

m= 0 

[ 1 +  ( - l ) m l  
r (y) 

where 

The  leading  term of (145a) is  

lT 

- W  €OM0 ikor -i- 4 
(145b) l e  

2 J Z ( k o r ) Z  

The residue of a(+) at pole 4, is  

2 i2d k, cos +p 2r c o s + p e  

€2 
-cZsin+ t 2 (bt sin+p) 

P 2  

(146a) = 

( 146b) =(*)tan 4, (1   t i 2d   kocos  9,) e 
i2d k, cos 

( i f  r = r0) . 
a- 1 P 



The  branch cut integral  K is given  approximately by 

2 

Eo M o  
(147) - [ 5 (bk, t kyo) ]' 

Ha(branch)  2fic2(kz -k;.) y 3 2  

where kyo is  the  branch  point  given  in  (102b)  The  leading  terms 

for E, and E from  saddle  point  method of integration  are Y 71 
ikor - iz 

* Moko e 
(145b) Hz - - -1 sin 0 Q(0) 

2 5  ( k o r )  

ikor -i- 4 
5T 

-Mako e 
(145c) Ey '% 

n, 
1 COS 0 Q(e) 

2& (kor )2  
- 

where Q(0)  is given  by  (142a). In t e rms  of cylindrical  coordinates 

the  field  components are 

(145d) E, * 0 
CCI 

ikor -i - 71 
4 

The Poynting vector i s  
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Electr ic   Line  Source  Paral le l  
to  Y-Axis 

The  electric  l ine  source  located  at  x = d, z = 0 and  parallel 

to  y-axis  can  be  represented by 

A s  the  current  has no variation  in  y-direction  the  radiated  field 

will  be  independent of yo  The  method of potentials is  used  in 

constructing  the  total  electromagnetic  fields.  The  fields  will  be 

expressed  in   terms of the  magnetic  and  electric  vector  potentials 

AT and FT in  the  upper  region  and AB and FB in  the  lower  region 
- - 7 - 

having  only  y-components.  The  field  components  in  the  upper 

region  are  given as 

o r  

H = i w F T  Y 
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. ~ 

- 
where AT = YAT  and FT = y FT. AT  and FT satisfy  respectively 

A - A 

the wave equations 

( 14 3a) 7 AT i ko AT = -poIo 6(x-d) 6 ( ~ )  2 2 

and 

(148b)  V FT t koFT = 0 2 2 

The  solutions  are 

-00 

where l 2  = ko - kZ  and g l  i s  the  same  as  that  shown in  
2 2  

(90 ) .  g2 and 

R have  to b e  determined by the  boundary  conditions  at x = 0 which 

will  be  discussed  later on. 

In  the  bottom  region  we  introduce  the  vector  functions 

and 
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 AB^ and F B ~  have  to  satisfy  the  equation (43) which  in  this  problem 

is 

The  solutions  are 

and 

( 152b) 

2 2 a!2 2 2  2 
where kx = k a - - - kz. f l  and f 2  are   determined by  the 

boundary  conditions  at x = 0. The  roots of  I and k, will  be chosen 

a 

get  the  field  components  in  the  bottom  region 
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or 

The  tangential  components of electric  and  magnetic  field  components 

a t  the  boundary x = 0 are   required to be  continuous. A s  a conse- 

quence we find 

( I  54a) 
(*)(l t R )  e il d 

= (1 - 5) f l  

I kZ kx 

€ 0  p~ a2 
( 154b) - g 2  = f l  t - f 2  

Ea 

( 154c) 

IO iBd - ikx f ,  - - (1  54d) - ( 1 - R )  e 
2 

inkz 
“ 

Pa p e  a2 f2 0 
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Solving  these  simultaneous  equations  the  results  are 

Hence,  the  final  expressions  for  the  field  components  in  the  region 

x 2 d are  given  in  the  following  integral  form. 

( 157a) 

(1 57b) 

( 157c) 

( 157d) 

( 157e) 

43 2 i l ( x t d )  +ik,z 
PoIo(1-4Q E, - - - 

2Tr s -m k z e  Rd dkZ 

il (x+ d) t ikzz 
poI0( l-cu)Q O0 l k, e 

E, = 
2lT S R d  dkZ 

-m 

i P  (x-d)  tik,z 
e dkZ 



where 

Two of the branch  points  are  given in (102a)  while  the  other two 

a r e  

(102c) kz2 = - ko 1 - pz + Jn2 - p2 

One of  these two branch  points is  on the right  side of  k, and  the 

other  one on the  left  side of -ko in  the  k,-plane.  This is  shown 

in Fig. 12. The  location of the  poles a r e  found  by  solving 

2 
( 158a) [ E a (  1 -a) P -eokX] [pa( 1 -a) P -pokx] t 0 poco k, = 0 

i. e. 
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4 

t i k: 

Fig. 12--Relative  positions of branch  points,  branch  cuts 
and  the  path of integration  in  k,-plane  and  +-plane 
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Squaring  both  sides of (158b)  we  get  the  solutions 

1 

(1 59a) k, = 2 ko[ (A i@)/C]' 

where 

1 
2 

( 159b) k, = - ko (D/E) (if p = po or  E = eo)  t - 

E = (1-p2)   (n2+1)  (nz+l  - 2 p )  (n ' t  1 +  2 ~ )  

The  location of these  poles  must  be  examined  to  see  which  Riemann 

sheet  they  are on. 

When v = 0 L? as   wel l   as  (Y and g2 equal  zero  and  the R shown 

in  (155)  reduces  to  that  given  in  (99a)  which  eventually  becomes  the 

reflection  coefficient  from a semi-infinite  stationary  medium.[ 271 

When p = po and E = eo both R and  gz  reduce  to  zero we have  the 
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same  conclusion as the  one  given  in  Section  IV-1  that  the  motion 

of the  bottom  region  have no, effect upon  the  whole  radiation  field. 

The  motion of the  bottom  region  creates  those  field  components 

- 
derived  from  the  potential  functions FT and FB which  do  not 

- 

exist  when  the  bottom  region is stationary  or  moving  in  the 

direction  perpendicular  to  the  line  source. 

Applying  the  transformation  given  in  (110)  with ky r e -  

placed  by k, Eq. (157b)  becomes 

ikor  cos(+-0) 
Ey - - - u- r P(+) e  d+ 

41T . 

where 

( 1604  

i 2 d  ko c o s  Q 
e 

The  transformed  path of integration Co, the path of the steepest  

descent C s  w-hich is  determined by cos(u-0)  coshq = 1, the  saddle 

point 8 and  the  branch  cuts  in  the  +-plane  are  shown  in Fig. 12. 

The  hatched  region  corresponding  to  the  proper  branch  for I .  

The  branch  points  due  to k, in  the  +-plane  are  transformed  from 

(102c) as the  solution of 
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(161a)  sin Q = - 

and  the  pole f r o m  (159) as 

(161b) 
1 

sin +p = 2 [ (A t*)/C]' 

Deforming  the  path of integrat ion  f rom Co to Cs  the  integral  given  in 

(160)  changes to 

P 

where + is given by (161b, c )  , F(+p) i s  the  residue of P(+) at  +p and P 

K is   the  branch  cut  integral .  If t he re   a r e  no poles of the  integrand 

near  the  saddle  point  the first term  in  (162)  can be evaluated  asymp- 

tot ical ly   as  

I T W  
ikor - iq IT 

(163a) EY 2 - kJ0  e 2 PIy, -im- 4 e 
41T 

m=O 

r (F) 
[ l t ( - l ) m l  

m t  1 
z ( F  )2T- 
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m I 

where Pm(e) = 
d+m 

and is gamma function.  The  leading 

t e r m  is 

Since  these  poles  are  simple  ones  the  residue of P(+) at  4 is  
P 

i2d ko cos d, 
- e  P 

Fd = 2 c r s i n ~ $ ~   c o s  + - s in+  Era( 1-0) cos +p P P 

If the  pole  happens  to  be  in  the  near  vicinity of the  saddlepoint  the f i r s t  

term  in  (162)  can  be  evaluated  asymptotically  in  the  same  manner 

as the  one  shown  in  Section IV-  1. 
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The  radiat ion  pat terns   are   symmetr ic   with  respect  to x-axis. 

A branch  cut   integral   must  be included if the  path C s  is intercepted 

by  the  branch  cut  when  the  angle of observation 8 extends  over  the 

limit given  by 

The  complete  contour is  constructed  in  the  same  way as that  shown 

in Fig. lla. The  branch  cut  integral   can  be  performed  approxi- 

mately as follows. 

Making  the  transform of variable  such  that 

( 166) k, = kzo t it/z 

where kzo is  one of the branch  points  shown  in  (102c).  In  terms of 

the  new variable  t,   the  following  approximations  are  permissible 

for  large  values of z. 

2 2 2  I = ko - kZ = 

k x = k o  2 2 (  n a - -  2 b”) 2 ( < )  (. it,)’ 

a 
- k z =  ko n a - -  - z o  

= k:  (n’a - $1 - k,, - 2ikzot/z + tZ/z 
2 2 

’c. - -2ikZot/z . 

Equation ( 157b) reduces  to 
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1 crpraz(l-a) 2 (kt-kzo) 2 t a k  E r P p  2 (1 -4  (ko-k 1 -“kzo 2 1  2 2 2  2 

zo zo 

ikzoz -[-(xtd) 
- e  

It is clear  that  both  the  branch  cut  integral  shown  in  (167)  and  the 

residue  wave  term  shown  in  (162)  are  negligible  as  compared  with 

the  space  wave  term  given  in  (163)  when  only  the  far  field is  con- 

cerned.  The same procedures  shown  above  can  be  used  in  evaluating 

other  field  components  given  in  (157).  The  leading  terms  from  the 

saddle  point  method of integration  are, 

- 
Io( 1-0)  !2 k ikor - i - 

11 

( 1 6 3 ~ )  E, = - L e  
Eo&(kor)5 s in  e p,(e) 
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lT 

Ioko  ikor -iz 
(163e) H, = l e  s i n  8 P(0)  

2&( kor) ' 

where P(+) is given  in  (1604  and 

In cylindrical  coordinates  the  field  components  and  Poynting  vector 

due  to  potential AT a r e  

[163h) Hr - 0 
- 

ll 

IokO ikor -i 

( 163i) - 1 e He % - 
2,~2~r(k,r)' r 
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and  those  due  to  potential FT a r e  

( 163k) E, 2 0  

Magnetic  Line  Source  Parallel 
to Y -Axis 

For a magnetic  line  source  located  at x = d, z = 0 and paral le l  

to  y-axis we wri te   i t   as  

The  radiated  field has no  variation  with  respect  to y. The  formu- 

lation of the problem in this  section is similar to  the  one in the 

previous  section  with  minor  differences.  The  field  components in 

the  upper  region  are  given  by  (147)butA~ and FT satisfy  respec- 

tively  the  following  wave  equations. 



( 170a) 
2 2 V AT t k,AT 0 

and 

( 170b) V FT t ko FT = - E ~ M ,  6 (x-d) 6 ( ~ )  . 2 2 

The  solutions  are 

where l = ko -kZ  and g 2  is the  same as  that  shown  in  (132).  gl 2 2 2  

and R are  determined  later  on by  the  boundary  conditions a t  x = 0. 

In the  bottom  region we use  the  same  formulation  from  (150) 

through ( 1  53).  Matching  the  tangential  electric  and  magnetic  field 

components of both  sides  at  the  boundary x = 0 gives  the  following 

simultaneous  equations. 

n2 
( 172a)  gl = (1 - px) f l  

(172b) M, i l d  - ink, i k, (1-R)e  
2 
" 

p . ~  a2 E a  
f,  t - f 2  

-€OM0 n2 
(172c)   (1 tR)  e ild = (1 - "J)f2 

2 i l  
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I kX 52 kZ ( 172d) - g 1 =  - f l  " 
p~ a' PO Cla 

f 2  

F r o m  (172)  we  have 

il d 
-ipOEO( 1 -a) 52Mo kz e 

(174)  gl = 
[pa( 1 -a)P -pokx] [ E a (  1-a)P "E okx] + a  pOc ,kZ 2 .  

The  expressions  in  integral  form  for  the  field  components  in  the 

region x 1 d a r e  

(175a) 
i P  (x-d) +ik,z 

E, = - 
4Tr . e dkZ 

-00 

( 175b) E =  P0~,(l-Q) Q M, il (x+d) + ik,z 
Y 2Tr v" '$ e dk, 

-aJ 

(175c) 
i P  (x-d)  +ikzz 

E, = - 
4n . dkZ 

-W 

2 iP (x+d) + ik,z 

( 175d) 
-eO( l  -cr)G? M, k, e 

% =  2T S Rd dkZ 
-w 



(175e) 
- u E ~ M ~  cm 

! 
47r * :  HY - - Rn i21 d il (x-d) + ikze e l e  dkz 

-00 

E ~ ( ~ - ~ ) Q M ,  k& i l ( x + d )  +ik,z 
(175f) Hz = e 

27r dkZ 
,m 

where 

Branch  points  are  given  in  (102a, c) and  shown  in Fig. 12. Poles  

can  be  found  from  (159).  Using  the  transformation  (110)  where k 

is   replaced by k, (175e)  becomes 

Y 

-a 

where 

( 176a) a(+) = 1 + 

n e  i2d k, cos + 
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The  transformed  path of integration C, and  the  steepest  descent 

path C s  a r e   a l s o  shown  in Fig.  12. The  branch  points  and  poles in  

+-plane  are  given by (16  1).  Shifting  the  path of integration  from 

C, to C s  the  integral  in  (176e)  can  be  written  as 

(1  77) Hy - - U f O M o  [ a(+) e 
ikor  cos(+-8) - d+ 

4l.r . 

P 

where G(+ ) is the  residue of a(+) at  the  pole + which is given  in 

(161b, c) . If t he re   a r e  no poles  located  near  the  saddle  point  the 

P P 

f i rs t   term  in   (177)   can  be  evaluated  approximately  for   the  far   f ie ld  

as  

T T a )  lr 

i k o r - i q  a m o e  -im 4 
(178a) H = -  U E O M O  e [ 1+ ( -  1) "1 

Y 41T m !  
m =  0 

T T a )  lr 

i k o r - i q  a m o e  -im 4 
(178a) H = -  U E O M O  e [ 1+ ( -  1) "1 

Y 41T m !  
m =  0 

m t  1 
2 ( ! y ) Z  

where  the  leading  term is 
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The  residue of a(+) at pole +I is 
P 

b2 
a P 

(n2a  ---sin+ ) 

cos 4)p 

2 b2 sin2Q, ) Z  
1 

( n a - - -  
a P 

A branch  cut  integral  has to  be  included i f  the  angle of observation 0 

is  beyond  the  limit  given  in  (165)  Its  approximate  value is  

i w c o a  ~ , ( l - a ) J Z k z o  

4 5  

(180) H CI, 

Y(branch) 
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2 2  -ko ( ~ + d )  
- e  

where  kzo is given  in  (102c).  The  leading  term  from  the 

point  method of integration for the  other  field  components 

a r e  

(178c) 

(178d) 

(178e) 

( 178f) 

(178g) 

q, o (1-0) aM0 
IT 

ikor-i-  4 e Pl(0) EY * 1 

&( kor) 
- 

ikor -i- 
IT 

E, +b 
- Moko e cos  0 Q(0) - 

2 F ( k 0 r ) '  

saddle 

in  (175) 

where a(+) is  given  in  (176a)  and P I ( + )  in  (168). In cylindrical 

coordinates  the  field  components  and  Poynting  vector  due  to 

potential FT a r e  
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IT 
ik,r-iq - Mako 

( 178i) Ee - 1 e Q (e) 
2f ikor) '  

IT 

-0 c0Mo i k o r - i q  
( 178b) 

- 
HY - l e  

ace, 
2&(kor)' 

- 

and those due to AT a r e  

(178k) H, -,, 0 
- 
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CHAPTER V 

CONCLUSIONS 

The  definite  form of Maxwell's  equations  for a moving 

isotropic  and  lossless  medium has been  derived  by  making  use 

of the  constitutive  relations  as  found  in  Minkowski's  theory. 

The  wave  equations  satisfied  by  the  field  vectors  were  given. 

The  integration of these  equations i s  performed by the  intro- 

duction of the  vector  and  scalar  potential  functions  following a 

method  similar to that  used  for  the  stationary  medium.  The 

results  are  then  applied to t reat  two problems,  The  first is  the 

problem of rectangular  and  cylindrical  waveguides  which  are 

filled  with  isotropic  and  lossless  media  moving  uniformly  in  the 

direction  parallel  to  the  axis of the  guide.  The  second  problem 

deals  with  the  effect of uniform  motion of a dielectric  half-space 

on  the  radiation  from a line  source  located  above  and  parallel  to 

the  half-space.  The  sources  considered  are  electric  and  magnetic 

l ine  sources ,   perpendicular   or   paral le l   to   the  direct ion of motion. 

The  results  thus  obtained  reduce, as expected, to the known 

solutions  for a medium  at   rest   when  the  medium  becomes  stationary 

o r  when  the  constitutive  parameters of the  medium  are  set   equal 

to  those of free  space. 
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In the  waveguide  problem it  is found  that  when  the  velocity 

of the  medium is small such  that  np < 1 there  is another   f re-  

quency limit denoted by f, which is larger  than  the  cut off f r e -  

quency f,. Two waves  with  different  phase  velocity  can  propagate 

freely  and  the  faster one travels  in  the  direction  opposite  to  that  

of the  moving  medium  while  the  other  one  travels  in  this  or  the 

reversed  direction  depending  on  whether  the  frequency is  below 

o r  above f+. f ,  reduces  to f c  when p approaches  zero  or n 

approaches one. As the  velocity of the  medium  becomes  higher 

and n(3 > 1, the  cut off phenomenon  disappears  but  there is  s t i l l  

another  frequency  limit  denoted by f -  given  by  the  same  formula 

as  that  for f,. It is also  possible to  have two waves of unequal 

phase  velocity  propagating  without  attenuation.  Both  will  travel 

in  the  same  direction  as  that  of the  medium  unless  the  frequency 

is  lower  than f -  in  which  case  the  slower  one  travels  in  the  opposite 

direction. 

In the  case of a moving  half-space  when  the  line  source is 

oriented  perpendicular  to  the  moving  direction,  the  field  expressions 

are  similar  to  those  in  the  stationary  case  and  the far field i s  l inearly 

polarized.  When  the  line  source is oriented  parallel  to  the  moving 

direction  another  wave  component  arises  and  its  magnitude  varies 
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mainly  with  the  velocity.  Then  the  radiated  field is in   genera l  

elliptically  polarized.  However,  the  direction of power  flow  for 

each  individual  wave  component is found  to  be  radial. 

The  proper  location of the  branch  cuts  depends upon the 

magnitude of the  index of refraction  and  the  velocity of the  moving 

medium.  Stronger  variations  are  observed  when  the  l ine  source 

is oriented  perpendicular  to  the  moving  direction. 

95 



REFERENCES 

1. Lorentz, H. A. , "Electromagnetic  Phenomena in a System 

Moving  with Any Velocity Smaller than that of Light, ' I  

Proc.  Acad. S c i  , Amst., 6, p. 809, 1904. 

2. Poincare,  H., "Sur la dynamique  de  l 'electron, C. R. Acad. 

Sci. , Paris, 140, p. 1504,  1905;  "Sur la dynamique  de 

l'electron, R. C. Circ.   mat.   Palermo, 21, p. 129,  1906. 

3. Einstein, A. , "Zur  Elektrodynamik  bewegter  Korper, 

Ann. Phys. , Lpz. , 17, p. 89 1,  1905. 

4. Minkowski,  Hermann, "Die Grundgleichungen  fur  die 

elektromagnetischen  Vorgange  in  bewegten  Korpern, ' I  

Gottingen  Nachrichten, p. 53, 1908. 

5. Tai, C. T. ,  "A Study of Electrodynamics of Moving Media, I '  

Proc.  IEEE, Vol. 52, p. 685,  June 1964. 

6. Fano, R. M.,  Chu, L. J. , Adler, R. B. , "Electromagnetic 

Fields,   Energy  and  Forces,  Chap. 9, John  Wiley and. Sons, 

Inc. , New York, N. Y. , 1960, 

7. Boffi, L. V. , "Electrodynamics of Moving  Media, Ph. D. 

dissertation,  Massachusetts  Institute of Technology, 

Cambridge, 1958. 

96 



8. Tai, C. T., op. cit. 

9. Compton, R. T., Jr. , and  Tai, C. T. , "The  Dyadic  Green's 

Function  for  an  Infinite Moving  Medium, I f  Report 169 1-3, 

January 1964,  Antenna  Laboratory,  The  Ohio  State 

University  Research  Foundation,  prepared  under  Grant 

Number  NsG-448,  National  Aeronautics  and  Space 

Administration,  Washington 25, D. C. ; "Radiation  from 

Harmonic  Sources in a Uniformly Moving  Medium, 

Trans. of the IEEE, Vol. AP-13, No. 4 , July 1965. 

10. Collier, J. R.,  and  Tai, C.  T. , "Guided  Waves  in  Moving 

Media, I '  Trans. of the  IEEE, Vol. MTT-13, No. 4, 

July 1965. 

11. Tai, C. T., "Two Scattering  Problems  Involving Moving 

Media,  Report  1691-7,  May  1964,  Antenna  Laboratory, 

The Ohio State  University  Research  Foundation,  prepared 

under  Grant  Number  NsG-448,  National  Aeronautics  and 

Space  Administration,  Washington 25, D.  C. 

12. Tai, C. T.,  "The  Dyadic  Green's  Function  for a Moving 

Medium,  Trans. of the IEEE, Vol. AP- 13, No. 2, 

p. 322, March 1965. 

97 



13. Lee, K. S. €€. , and  Papas, C. H. , "Electromagnetic  Radiation 

in the  Presence of Moving Simple Media,  Jour. of Math. 

Phys. , Vol. 5, No. 12, December  1964;  Daly, P. Lee, K. S. H. , 

and  Papas, C. H., "Radiation  Resistance of an Oscillating 

Dipole in a Moving  Medium, I '  Trans. of the IEEE, Vo1. 13, 

No. 4, July 1965. 

14. Lee, K. S. H. , and Papas , C. H. , "Antenna  Radiation  in a 

Moving Dispersive  Medium,  Trans. of the IEEE, Vol. AP-13, 

No. 5, September 1965. 

15. Papas,  C. H. , Theory of Electromagnetic  Wave  Propagation, 

McGraw-Hill Book Co. , Inc., New York, p. 222, 1965. 

16. Sommerfeld,  A.,  Electrodynamics,  Academic  Press, New 

York, p. 280, 1952. 

17. Tai, C. T. , "The  Dyadic  Green's  Function  for a Moving 

Medium,  Trans. of the LEEE, Vol. AP-  13, NO. 2. , 

p. 322, March 1965. 

18. Stratton, J. A. , Electromagnetic  Theory,  McGraw-Hill 

Book Co. , Inc. , New York, p. 23, 1941. 

19. Tai, C. T.,  "Effect of a Grounded  Slab  on  Radiation  from 

a Line  Source, ' I  J. Appl. Physics,  Vol. 22, p. 40 5, 

April  19 5 1, 

98 



20. 

2 1. 

2 2. 

2 3. 

24. 

2 5. 

26. 

2 7. 

Barone, S.,  "Leaky  Wave  Contribution  to  the  Field of a 

Line  Source  above a Dielectric Slab, Polytech.  Inst. 

Brooklyn,  MRI  Research  Report  R-532-56,  November 1956. 

Whitmer, R. M. , "Field in Non-metallic  Waveguides,  Proc. 

I R E ,  Vol. 36, p. 1105,  September 1948. 

Tai, C.  T. , "Effect of a Grounded  Slab on  Radiation f r o m  a 

Line  Source, ' I  J. Appl. Physics, Vol. 22, p. 405, April  1951. 

Oberhettinger, F. , "On a Modification of Watson's  Lemma, If 

J. Research  National  Bureau of Standards, Vol. 63B, p. 15, 

July-September 1959. 

Erdelyi, A. , Higher  Transcendental  Functions, Vol. I, 

McGraw-Hill  Book  Co., Inc. , New York, 1953. 

Ott, H.,  Ann Physik, Vol. 41, p. 443, 1942. 

Whittaker, E. T. and  Watson, G.  N. , Modern  Analysis, 

Cambridge  University  Press,  The  Macmillan  Company, 

New York, p. 245,  1946. 

Tai, C. T.,  "Effect of a Grounded  Slab  on  Radiation  from a 

Line  Source, J. Appl. Physics, Vol. 22, p. 405,  April 1951. 


